Remote sensing with satellite mega-constellations

Avalanche Detection Using Passive Radar

Forschung kompakt /

In winter, avalanches pose the biggest danger in mountains. Avalanche monitoring is therefore of critical importance to ensure the safety of people and infrastructure. Researchers at the Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR are breaking new ground in avalanche detection. Passive radar — which uses signals from the new Starlink and One-Web satellite mega-constellations — enables them to detect whether avalanches have actually been triggered after controlled detonations, even in remote regions without terrestrial infrastructure. In a feasibility study, the researchers proved that satellite mega-constellations are suitable for avalanche detection.

© Fraunhofer FHR/Diego Cristallini
Practical tests in a former basalt mine: The right-hand receiver antenna of the passive radar is aligned with a Starlink satellite, while the left-hand receiver antenna points toward the controlled landslide.

Robots are playing an increasingly important role in industrial manufacturing in particular. In line with this trend, physical interactions between humans and robots have become a key technology helping to make production processes more efficient.

When developing human-machine interactions, worker safety is paramount. This is where the EU’s FITNESS (Flexible IntelligenT NEarfield Sensing Skins) project comes in. The project aims to optimize communication and interaction between humans and machines through intelligent antenna solutions in the form of innovative electromagnetic metamaterial surfaces with integrated electronics. The flexible, stretchable metasurface antenna, which are suitable for emitting surface waves, are expected to scan their near-field surroundings much more effectively than conventional antennas, thereby improving both human safety and the robots’ own performance. Six other partners from industry and the research sector are working on the project with Fraunhofer FHR: the French National Centre for Scientific Research (CNRS), eV-Technologies, Hamburg Uni-versity of Technology (TUHH), Université catholique de Louvain (UCLouvain), University of Zagreb Faculty of Electrical Engineering and Computing, and L-up. The project is being coordinated by UCLouvain, in Belgium, and is being funded by the European Union under GA No. 101098996.

Intelligent antenna skin with sensory and communicative functions

The metasurface antennas are flat antennas integrated into filmlike substrates that adapt to the robot’s contours. Thanks to their flat structure, these antennas can bend and stretch, wrapping around the robot like a skin. Alternatively, and depending on the application, they can also be positioned only on the robot arm, for example. That is how they came to be called “smart skins.” “What makes our future antenna solution special is that it can scan the near-field environment and detect movement while also being proficient at radio-based communication with the base station on the shop floor,” says Andrej Konforta, 3D-Print HF Systems group manager at Fraunhofer FHR. “No other solution like it exists on the market so far.”

Small geometries, high degree of freedom

The researchers’ goal is for the novel, innovative antenna solution to enable beamforming, a process used to control the radiation properties of an antenna electronically. The result is that the adjustable electromagnetic beam always faces toward the base station, guaranteeing a stronger, more stable signal and increasing the robot’s range. So far, beamforming has been typically supported by what are known as “phased arrays.” “In a phased array, many antennas are connected as a group. The phase of each individual antenna element is variable, which makes it possible to affect the direction the array is facing,” Konforta explains. The technology has previously been used mainly in military contexts. In conventional antenna arrays, the antenna elements and their electronics are packed close together. This produces high costs, a lot of waste heat, and high susceptibility to errors. Metasurface antennas, on the other hand, could be designed with significantly streamlined electronics — without losing the properties of the conventional configuration. The new concept can help to cut costs and realize smaller, more compact structures. “With the metamaterial surfaces, we’re pursuing a new design concept that allows for very small geometries with a high degree of freedom in the design of the fields emitted but also for the best possible extraction of gesture signals,” Konforta says.

Developing new antenna substrates

Antennas are typically integrated into rigid microwave substrates. There are also materials that can stretch, thus offering a high degree of flexibility. However, losses are too high with these flexible substrates: They do not perform optimally in the high-frequency range, as the measurement technology developed by the Fraunhofer FHR researchers showed. This means the conventional substrates available on the market are not an optimum fit for transmission of high-frequency signals. Based on Fraunhofer FHR’s findings, TUHH is developing new substrates as part of the FITNESS project. The Institute of Applied Polymer Physics (IAPP) is using a polymer mix and polymers with integrated ceramic particles to synthesize stretchable materials that are potentially suitable for high frequencies. These materials will then be tested by Fraunhofer FHR as the project moves forward. An existing measurement setup is also being optimized based on initial results and expanded for other frequency bands while the software for the fi-nal setup is being developed as well. At the same time, the project partners are investi-gating how deformations in the stretchable surfaces affect their properties in the near and far fields. Long-term plans call for self-calibrating metasurface antennas that autonomously recognize their curvature and shape to ensure optimum signal reception and prevent communication issues.

A whole host of applications

In addition to robotics in production settings, the project partners also believe medical engineering and robotics are potential fields of application. Metasurface antennas in smart skin form could help devices such as assistance robots recognize gestures more accurately and interact more with humans. There are also potential uses for this technology in personal protective equipment for firefighting and in space suits.