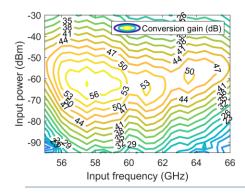


Harmonic Radar MMICs at 61/122 GHz

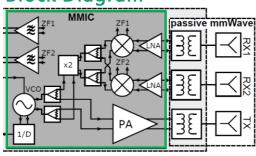
Transceiver MMIC: FHRHR1R Transponder MMIC: FHRTAGH1

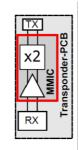
Contact:

Jan Wessel, Jan.wessel@fhr.fraunhofer.de

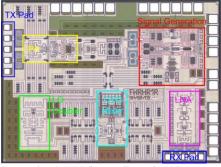

Description

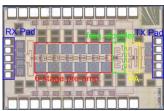
The harmonic radar chipset is specifically designed for clutter-resilient radar measurements in the license-free millimeter-wave ISM bands at 61 and 122 GHz. All RF components are integrated into two chips. The transceiver generates the signal with its VCO, which is transmitted to the transponder with high output power. The RF signal at the active transponder is amplified, frequency-doubled, and transmitted back to the transceiver. A receiver at the harmonic frequency converts the signal into the IF band. This is made possible by a frequency doubler in the LO path.


Specifications


Technology	Infineon B11HFC, SiGe-BiCMOS
Center Frequency [GHz]	TX: 61 GHz, RX: 122 GHz
Bandwidth [GHz]	TX: 7 GHz, RX: 14 GHz
Architecture	bistatic
Channels	1 TX / 2RX or 1 TX/1 RX
P _{out,Transceiver} [dBm]	19.7
P _{DC,MMIC} [mW]	transceiver: 840
	transponder: 145
Dimension [µm]	transceiver: 1996 x 1448
	transponder: 1448 x 948

Characteristics of transponder


Block Diagram



Transceiver MMIC (2RX optional)
Transponder MMIC

Microphotograph

Transceiver MMIC (here: 1TX and 1RX

Transponder MMIC

Further Reading

S. Hansen, C. Bredendiek, G. Briese and N. Pohl, "A Compact Harmonic Radar System With Active Tags at 61/122 GHz ISM Band in SiGe BiCMOS for Precise Localization," in *IEEE Transactions on Microwave Theory and Techniques*, vol. 69, no. 1, pp. 906-915, Jan. 2021, doi: 10.1109/TMTT.2020.3026353.